shRNA mediated knockdown of Nav1.7 in rat dorsal root ganglion attenuates pain following burn injury
نویسندگان
چکیده
BACKGROUND Abnormal acute pain after burn injury still torments patients severely. In this study, we investigated that one voltage gated sodium channel Nav1.7 plays a vital role in lowering heat pain threshold after burn injury, and the hypothesis that knockdown of Nav1.7 attenuates pain following burn injury. METHODS Sixty eight adult male Sprague-Dawley rats were divided into 4 treatment groups: (1) sham, which hind paw was put on the room temperature metal plate for 15 s (2) burn model, which hind paw was put on the 85 °C metal plate for 15 s. (3) Burn injury + lentiviral vector -SCN9AsiRNA-GFP (LV- SCN9AsiRNA-GFP group, n = 18), which receive the DRG microinjection of LV- SCN9AsiRNA-GFP on the zero day. (4) Burn injury + lentiviral vector negative control (LV-NC-GFP group, n = 18), which receive the DRG microinjection of empty lentiviral vector on the zero day. RESULTS Both mechanical and heat threshold were measured from day 1 to 21. Meanwhile, expression of sodium channels Nav1.7 in injured dorsal root ganglia were measured on post-operative days 7(POD 7). Rats exhibited decreased thresholds on both mechanical allodynia and thermal withdrawl latency, accompanied by increased Nav1.7 and c-fos expression in dorsal root ganglion (DRG). And knockdown of Nav1.7 in L5DRG led to the attenuation of burn injury-induced mechanical allodynia and thermal hyperalgesia in the rats. CONCLUSION We provide evidence that shRNA mediated knockdown of Nav1.7 attenuates burn induced pain in rats as well as decreased the activiation of c-fos protein.
منابع مشابه
MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat
Voltage-gated sodium channels, which are involved in pain pathways, have emerged as major targets for therapeutic intervention in pain disorders. Nav1.7, the tetrodotoxin-sensitive voltage-gated sodium channel isoform encoded by SCN9A and predominantly expressed in pain-sensing neurons in the dorsal root ganglion, plays a crucial role in nociception. MicroRNAs are highly conserved, small non-co...
متن کاملMorphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملThe Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats
Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...
متن کاملEfficacy of Anti-NaV1.7 Antibody on the Sensory Nervous System in a Rat Model of Lumbar Intervertebral Disc Injury
PURPOSE The pathophysiology of discogenic low back pain is not fully understood. Tetrodotoxin-sensitive voltage-gated sodium (NaV) channels are associated with primary sensory nerve transmission, and the NaV1.7 channel has emerged as an analgesic target. Previously, we found increased NaV1.7 expression in dorsal root ganglion (DRG) neurons innervating injured discs. This study aimed to examine ...
متن کاملElectroacupuncture attenuates chronic fibromyalgia pain through the phosphorylated phosphoinositide 3-kinase signaling pathway in the mouse brain
Objective(s): Fibromyalgia (FM) is a central nervous system disorder characterized by widespread mechanical hyperalgesia due to unknown mechanisms. Several inflammatory mediators, such as interleukin-1 (IL-1), IL-6, IL-8, and tumor necrosis factor, are increased in the serum of FM patients. Although medications including pregabalin, duloxetine, and milnacipran are used...
متن کامل